首页 \ 学习文档 \ 教学教案

数学比的意义教案【优秀28篇】

作为一名教学工作者,总归要编写教学设计,借助教学设计可以让教学工作更加有效地进行。教学设计应该怎么写才好呢?

数学比的意义教案 1

比的意义

本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。

这部分内容是在学生学过分数与除法的联系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关。

正确理解比的意义。

1、通过实物及学过的联系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。

2、举例说明比值的求法,以以及比和除法的联系。

;常分米,款分米的红旗一面,投影仪一、复习引入。

1、出示红旗。

讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?

引导学生回答:

要表示红旗的长和宽的联系,可以求长是宽的几倍,或者宽是长的几分之几。

板书;3÷2=3/2……长是宽地3/2。

2÷3=2/3……宽是长到2/3。

二、探究新知。

1、导入新课。

导语:(教师自备)

板书:比

2、教学比难道意义。

1、)红旗长和宽的联系,也可以这样说:

长和宽的比是2比3,

宽和长的比是2比3。

2、)出示投影片:

“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”

求汽车路程和时间的比是:100比2。

3、)学生讨论比的意义。

4、)教师小结:两个数相除又叫做两个数的比。

3、教学比的读写法,各部分的名称及求比值的方法。

1、)比的写法:3比2记作3:2。

2比3记作2:3。

100比2记作100:2。

2、)比的读法。

3、)比的各部分的名称:

3 : 2=3÷2= 3/2

| | | |

前项比号后项比值

4、)比值;

比的前项除以后项所得的商,叫做比值。

说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。

比的后项不能0。

4、做教科书第62页上半部分的`“做一做”的题目。

5、教学比与除法、分数的联系。

6、做教科书第61页下半部分的“做一做”的题目。

三、巩固练习:

1、做练习十七的第1题。

2、做练习十七的第2、3题。

四、课堂小结:

同学们,这节课我们学到了什么知识?如何求比值?

板书设计:

3、比

比的意义:两个数相除有叫做两个数的比。

比的各部分名称:3:2=3÷2=3/2

||||

前项比号后项比值

比值:比的前项除以后项所得的商,叫做比值

比的意义 2

教科书第61——62页,练习十七第1——4题

本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。

这部分内容是在学生学过分数与除法的联系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关。

正确理解比的意义。

1、通过实物及学过的联系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。

2、举例说明比值的求法,以以及比和除法的联系。

;常分米,款分米的红旗一面,投影仪一、复习引入。

1、出示红旗。

讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?

引导学生回答:

要表示红旗的长和宽的联系,可以求长是宽的几倍,或者宽是长的几分之几。

板书;3÷2=3/2……长是宽地3/2。

2÷3=2/3……宽是长到2/3。

二、探究新知。

1、导入新课。

导语:(教师自备)

板书:比

2、教学比难道意义。

1、)红旗长和宽的联系,也可以这样说:

长和宽的比是2 比3,

宽和长的比是2比3 。

2、)出示投影片:

“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”

求汽车路程和时间的比是:100比2。

3、)学生讨论比的意义。

4、)教师小结:两个数相除又叫做两个数的比。

3、教学比的读写法,各部分的名称及求比值的方法。

1、)比的写法:3比2    记作3 :2。

2比3    记作2 :3。

100比2    记作 100  :2。

2、)比的读法。

3、)比的各部分的名称:

3    :  2 =3÷2 = 3/2

|   |  |         |

前项        比号     后项               比值

4、)比值;

比的前项除以后项所得的商,叫做比值。

说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。

比的后项不能0。

4、做教科书第62页上半部分的“做一做”的题目。

5、教学比与除法、分数的联系。

6、做教科书第61页下半部分的“做一做”的题目。

三、巩固练习:

1、做练习十七的第1题。

2、做练习十七的第2、3题。

四、课堂小结:

同学们,这节课我们学到了什么知识?如何求比值?

板书设计:

3、比

比的意义:两个数相除有叫做两个数的比。

比的各部分名称:3         :      2   =  3÷2   =  3/2

|     |        |                        |

前项   比号     后项                  比值

比值:比的前项除以后项所得的商,叫做比值

《比的意义》教学反思 3

今天我教了《比的意义》。一节课下来,感触颇多:

一、这节课充分体现了数学源于生活,也服务于生活。

在现实情境中体验和理解数学,这一教学理念。本课的导入从学生的实际出发,问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。

在学习比的意义的时候,考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几倍或几分之几,又可以说成谁和谁的比。意在节省教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。

二、放手让学生自学,培养学生的自学能力,体现了学生是学习的主体,教师是组织者、合作者这一教学理念。

例如:在教学比的各部分名称时,根据内容简单,便于自学特点,放手让学生自学,引导学生主动的进行思考、讨论、交流,这样既培养了学生的自学能力,又拓展了课堂的宽度,同时也使教学重点得到强化。

三、鼓励学生独立思考,引导学生自主探索,合作交流这一教学理念也得到充分体现。

例如:在处理比与除法和分数的联系和区别这一教学难点时,教师课前为学生设计了比较的表格,先让学生自己填写,再分组讨论,使同学们在活动中相互交流,相互启发,相互鼓励,共同体验成功的快乐,与此同时,也使学生感悟到了事物间的相互依存,相互转化。

四、在以后的教学中要注意时间的把控。

学生讨论是充分了,但是,学生的练习时间就有一定的问题,没有时间完成。看来,教与学生的书面练习之间还得下功夫去进行时间的把握,使自己的以后教学做的更好。

《比的意义》教学反思 4

这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比。教材还介绍了每个比的各部分名称和比值的概念,说明比值的求法以及让学生议一议比和除法、分数的关系。本课的教学重点是理解和运用比的意义并学会求比值。教学难点是理解比的意义。

学生是在学过分数与除法的关系,分数乘除法的意义和计算方法的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识自主学习能力。

本课的导入从学生的实际出发,由搅拌水泥沙引出课题,问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。在学习比的意义的时候,考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。意在节省教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。在学习比的各部分名称及比值的求法时,采用了让学生自学课本的方式,因为自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。在学习比和除法以及和分数关系的时候采用小组合作学习的方式,意在突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

比的意义 5

下面是第一范文网小编整理的小学数学《比的意义》说课稿模板,希望对大家有所帮助。

一、教材及学生情况分析:

“比的意义”是小学五年级第十册教材中第四单元的起始课,是本册教材的教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

2、教学目标:

“从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。(1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。

(2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。

(3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。

3、教学重点难点:

理解掌握比的意义,比与分数、除法之间的联系。

二、教学方法的设计

1、用创设情境法,激发学生对比的知识的研究兴趣。

2、从日常生活中,培养学生能够发现数学问题。

3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。

4、当堂巩固,当堂反馈练习, 练习形式多样,使学生从多种学习方式的活动中理解比的意义。

5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。

三、教学过程的活动与安排

(一)创设情境,导入新课

利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

(二)自主探究,合作交流

1、“比的意义”教学。

第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。

2、比的读法与写法、各部分的名称、求比值的方法的教学。教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。

3、比与除法、分数之间的关系,比的后项为什么不能为零?

通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。

(三)、总结、归纳引导学生谈学习感受。

通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。

(四)、多层次练习,巩固新知识。

练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。

比的意义 6

(一)

一、填空。

1、某校六年级一班有男生24人,女生25人。

(1)、男生人数与女生人数的比是( ),比值是( )。

(2)、女生人数与男生人数的比是( ),比值是( )。

(3)、女生人数与全班人数的比是( ),比值是( )。

(4)、全班人数与女生人数的比是( ),比值是( )。

2、小明3分钟走了240米,小杰5分钟走了350米。

(1)、小明与小杰行走时间的比是( ),比值是( )。

(2)、小明行走的路程与小杰的路程的比是( ),比值是( )。

(3)、小明行走路程与时间的比是( ),比值是( ),比值表示( )。

(4)、小杰行走路程与时间的比是( ),比值是( ),比值表示( )。

(5)、小明行走速度与小杰行走速度的比是( )。

二、求比值。

5:2.5 2.8:       :       :

(二)

一、填空。

1、男生人数是女生的,女生人数与男生人数的比是( )。

2、甲数是乙数的2倍,乙数和甲数的比是( )。

3、一段路,甲走完全程用7小时,乙走完全程用6小时,写出甲、乙的时间比是( ),

甲与乙的速度比是( )。

4、甲比乙多3,甲是8,甲与乙两数的比是( ),比值是( )。

5、( ):6=0.75 6:( )=0.75

6、两个正方形的边长的比是1:3,它们的周长比是( )。

7、甲乙两数的比是2:3,甲是两数之和的( )。

8、一个直角三角形中的两个锐角的度数比是1:2,最小的一个锐角是( )度。

二、判断。

1、比的前、后项可以是任意数。 ( )

2、5米比7米的比值是5:7。 ( )

3、一场球赛的比分是2:0,因此比的后项可以是0。 ( )

4、3:8可以写成,比值是2。

三、看图填比。

1、甲与乙的比是( ):( )。

2、乙与甲的比是( ):( )。

3、甲与甲乙两数和的比是( ):( )。

4、乙与甲乙两数和的比是( ):( )。

5、甲乙两数差与甲乙两数和的比是( ):( )。

四、解决问题。

1、李师傅15分钟做了5个零件,他所做零件数量与时间的比是多少?比值是多少?这个比值表示什么?

2、把10克盐放入100克水中,盐和水的比是多少?盐和盐水的比是多少?

3、一个直角三角形中,两个锐角的度数比是1:1,其中一条直角边长4厘米,

求这个直角三角形的面积。

《比的意义》说课稿 7

尊敬的各位领导、各位老师:

大家好!我叫巴瑞,来自淮河东路小学,我今天说课的内容是人教版小学数学四年级下册第四单元第一课时《小数的产生和意义》。首先我说说本课的教材分析。

一、说教材分析

“小数的产生和意义”属于“数与代数”的知识领域,它是在学生已经掌握并能灵活运用三年级已学过的“分数的初步认识”和“小数的初步认识”的基础上进行教学的,这一内容的学习既是前面知识的延伸,也是系统学习小数的开始。

二、说学情分析

学生在三年级已经学过“分数的初步认识”和“小数的初步认识”,本节课是学生系统学习小数的第一课时。

三、说学习目标及重难点。

根据对教材的理解与内容的分析,按照新课程标准中4-6学段数与代数中的要求:进一步认识小数,我设计了如下学习目标:

1、通过课件演示和联系实际,探索并理解小数的产生和意义。

2、通过实践操作,小组合作,学生理解并准确掌握小数的计数单位和相邻两个单位间的进率。

根据以上学习目标我预设:理解和掌握小数的意义将成为本节课的学习重点;理解小数的计数单位以及他们之间的进率将成为本节课的学习难点。

四、说教法学法

为了突破学习重难点,本节课我将采用“自主探究、合作交流”的学习方式。

五:说评价设计

根据学生的叙述来了解学生对知识的掌握情况;通过课本做一做和基础练习题,对目标1进行评价。通过学生在具体的操作活动与探索过程中表现状况和提升练习对目标2进行评价。

六、说学习流程

为了能更好地凸显“自主探究”的教学理念,高效完成学习目标,并结合本班学生特点,设计如下学习环节:

1、结合生活设疑 激发情趣导入

为了跳出陈旧的数学课单纯讲知传道的框架,学生体会到数学生活的。快乐,在新课开始通过“估一估、测一测”的游戏导入,让学生通过在估测再测量90厘米长的红彩带的游戏活动激发学生的学习热情。当我让学生用米作单位说出它的长度时,学生心理产生了矛盾,因为测量结果不够1米,无法得到整数的结果。这时我引出在生活中也有许多得不到整数结果的例子,这时人们便用分数和小数来表示,于是,小数便产生了。今天我们就,来学习小数的产生和意义,同时板书:小数的产生和意义。

通过这样一个简单的游戏,自然引出本节课所要研究的内容激发了学生的学习兴趣和探究的欲望,并使学生不知不觉走入对新课的思考。

2、探究小数的意义。

在教学中我力求引导学生在测量、观察等操作的基础上,从直观的1米平均分成10份,让学生用分别用整数、分数、小数来表示其中的一份,三份,七份,通过观察分数的相同点及小数间的相同点,总结出分母是十的分数可以写成一位小数。接着在认识一位小数的基础上,学生通过测量彩带及数学课本的长度并按要求完成表格,从而得出结论:分母是一百的分数可以写成两位小数。然后让学生想象一下:0.001米、0.051米,这些小数是几位小数?用分数表示分别是多少米?由此得知:分母是一千 的分数可以写成三位小数。最后学生通过小组合作讨论得出结果分母是10、100、1000……的分数可以用小数来表示。

学生的认知是由浅入深的,通过小组讨论,动手实践,他们已经理解一位小数,两位小数、三位小数的意义,同时完成学习目标一:通过教具演示和联系实际,探索并理解小数的产生和意义。

3、理解小数的计数单位及相邻两个计数单位间的进率。

当学生成功解决一个问题后我会趁热打铁,组织学生探究小数的计数单位,及相邻两个计数单位间的进率。我是这样做的:课件出示:0.8里面有()个十分之一;0.6里面有()个十分之一;0.07里有()个百分之一;0.09里有()个百分之一。通过学生的回答,我引导孩子,像0.8,0.6这样的小数,我们可以看成有多少个十分之一组成的,因此我们可以说一位小数的技术单位是十分之一,记作0.1。像0.07,0.09这样的小数,我们可以看成有多少个百分之一组成的,因此我们可以说两位小数的计数单位是百分之一,记作0.01;同学们想一想:三位小数的计数单位是多少?四位小数呢?通过课件演示:1/10米里面有()个1/100米,1/100米里面有()个1/1000米,从而认识到每相邻两个计数单位间的进率是10。请我没有直接告诉学生小数的计数单位是什么;每相邻两个计数单位间的进率是10,而是通过闯智慧关的游戏方式让学生从解决问题中发现、归纳出来。我认为这样能促使学生进行多角度、多方面、多层次的探索,以练习的形式探索出小数的计数单位、以每相邻两个计数单位之间的进率是10。符合学生的认知规律,培养学生应用所学知识解决问题的能力,发散了学生的思维,培养学生的合作交流意识和创新意识。完成学习目标二:2、通过实践操作,小组合作,学生理解并准确掌握小数的计数单位和相邻两个计数单位间的进率。

4、分层运用新知,逐步理解内化。

对于新知,需要及时组织学生巩固运用,才能得到理解内化的效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:

(1)基础练习 (通过这个练习,巩固新知。)

(2)提升练习 (连线题体现学习知识的灵活性。)

(3)发散练习 (培养学生综合运用知识的能力。)

整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

5、 课堂小结

“这节课的学习内容是什么?你有什么收获?”来对本节课所学的知识加以梳理总结。

七、板书设计:

这是我的板书设计,力求体现知识性、简洁性,既突出了本节课的重心,又凸显了清晰的课堂结构。

八 、教学效果预测

本节课利用游戏导入,能激发学生的学习兴趣,课堂气氛一定会十分活跃。而重点部分的教学采取让学生小组合作、动手操作实践,可以使学生互相督促,全员参与,保证了课堂教学效果。教师深入浅出的引导和充满激励的语言,将会给学生不断探究的动力和热情;而层次分明难易适度的练习题,也使新知得到巩固和应用。可以说本课的教学环环相扣,清晰有序,一定会取得令人满意的效果。

以上是我对《小数的产生和意义》一课的说课,不妥之处,敬请各位领导多提宝贵意见,谢谢。

《比的意义》说课稿 8

尊敬的各位评委老师你们好!我要说课的内容是义务教育教科书人教版小学数学四年级下册第一单元第2-3页的内容《加、减法的意义和各部分间的关系》。下面我谈谈本节课的教学设想,不妥之处,恳请各位教师指正。

一.我对教材的理解(教材分析)——参考教学参考书

内容的地位和作用: 《加、减法的意义和各部分间的关系》是在学生已学过简单整数加减法的基础上,通过实际情景问题的分析解决,进一步提升加减法意义及其各部分名称与关系的认识,使学生四则混合运算的知识与能力趋于完善,初步形成和提高计算和分析解决相关实际问题的。能力,也为以后进一步学习小数、分数加、减法的意义和关系奠定基础。

二.学情分析(根据考评要求,可不说)

因为年龄特征决定了四年级学生活泼好奇好动,虽具一定的抽象思维能力,但仍然以形象思维为主;就知识层面上,已经学习了简单整数加减法,对加减法意义及各部分名称有初步的感性认知,初步具备了理性认知学习的基础;同时又存在个体差异,多数学生思维活跃,数学兴趣浓厚,表现欲望强烈,少数学生缺乏积极性,学习被动。

三.教学目标

根据课程标准、教材内容与特点,结合学生的认知水平,我将教学目标定位如下:

1.知识与技能:使学生通过具体的情境与问题,探索认知理解加、减法的意义,掌握加、减法中各部分名称及的关系,培养学生运用加减法各部分间的关系解决相关简单实际问题能力,发展学生分析思维与推理能力。

2. 过程与方法:引导组织学生自主观察、合作交流、分析概括认知加、减法意义、关系,经历探索过程,体会加减、法间的互逆关系,培养观察、比较、分析、表达、归纳、概括等思维能力与团结协作能力。

3.情感态度:使学生在探索新知过程中,体会数学与生活的联系,获得成功的体验,增强数学兴趣与学习自信心(培养团结协作精神)。

四.教学重难点

依据课程标准和教材内容与理解,本课我确定了以下教学重点和难点

教学重点是:加、减法意义及各部分名称与关系的认知理解;

教学难点是:加、减法意义理解,体会加、减法间的互逆关系。

五.教学策略方法

让“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”及“教学活动是师生积极参与、交往互动、共同发展的过程”是数学课程的两大基本核心理念,同时教有法而无定法,贵在得法。因此,为把握重点,突破难点,力求实效,达成目标,依据教材与现代建构主义学习论,结合学生学情,我拟将主要采用教学策略方法是:

1.注重和发挥情景作用。充分利用教材主题图与多媒体技术创设展示教学情景问题,激发兴趣动力;

2. 运用教具学具与多媒体课件,直观呈现演示情景案例和问题,引导观察比较,丰富感知,促进意义构建与新知生长;

3.处理好师生角色地位的“两主一中心”关系,以教师为主导,以学生为主体和中心,教师恰当设问引路,引导学生自主观察分析案例,合作交流、比较分析、质疑解惑、归纳概括,实现新旧知识、能力的转化迁移和实践应用,巩固深化,掌握新知,形成技能。

六.教学过程

为了体现以学生为中心,发挥学生为主体和教师为主导作用,依据教学内容与目标要求,结合学生学情,拟从以下六个环节组织开展本课教学活动:

(一)充分利用教材主题图和现代教育技术,通过课件创设呈现引入现实情景与示例1(1),通过读题语言描述引导,学生直观感受西宁至拉萨包含西宁到格尔木与格尔木到拉萨两段路程,并进一步引导学生发现问题,调动激发学生兴趣动力。

(二)引导实践探索认知加法意义及各部分名称。

1.通过引导学生观察路线线段图和列式:814+1142=?并独自计算解决问题;

2.教师可设问:“为什么要用加法计算?”引导学生思考:“加法是什么样的运算?”、“两个加数分别叫什么?”等,引导小结加法的意义和各部分名称:“把两数合并成一个数的运算叫做加法”;“相加的两个数叫加数”,“加得的数叫和”

(三)减法意义与各部分名称的探索认知

1.运用多媒体课件呈现展示或阅读例1(2),结合线段图引导学生分析问题中已知什么与要求的问题是什么?以及数量关系,并列式计算;

2 .学生自主探索,独自完成例1(3)

3.设问引导,对比观察思考讨论:“与例1(1)相比,例1(2)、例1(3)题分别是已知什么数?要求什么数?、怎样算?减法是一种什么样的运算?(引导学生认知:例1(1)题是已知西宁至拉萨的两段铁路:西宁到格尔木、格尔木到拉萨的长,求全长,用加法;例1(2)、例1(3)题是已知全长和其中的一段铁路长,求另一段铁路长,都用减法计算。)

归纳概括小结:减法意义及各部分名称(已知两个数的和与其中的一个加数,求另一个加数的运算叫减法。在减法中,已知的和叫做被减数,减号后面的数叫减数,等号后面的结果数叫差。减法是加法的逆运算或加法和减法互为逆运算。)

(四)加、减法各部分关系探索认知

通过引导观察、比较例1(1)、例1(2)、例1(3)题算式数量关系,思考:“如何求和?”、“怎样求加数?”、“怎样求差、减数、被减数?”等问题,归纳概括,深化提升认知加、减法各部分关系,实现由案例感性认知到理性认知的飞跃,理解认知构建新知识,并促进学生思维能力发展。

(五)实践应用,深化巩固

依据教学重难点知识,有针对性地设计“做一做”、“算一算”、“连一连”、“说一说”、“判断正误”(具体案例)等分层变式,拓展练习、实践应用,学生独立操作,实现从理论到实践的飞跃,深化理解,掌握新知,形成技能。

(六)反思感悟,总结评价。

通过设问:“今天我们学习了什么内容?”、??“你有哪些收获?”回顾、反馈和梳理所学知识,同时培养学生表达能力。

七.板书设计

加减法的意义和各部分间的关系

加法各部分之间的关系? 减法各部分之间的关系

和=加数+加数 差=被减数-减数

加数=和-另一个加数? 被减数=差+减数

减数=被减数-差

板书是教学知识点的浓缩再现,梳理整合。本节课我拟通过以下简洁的板书突出重点,促进增强学生对重点知识的理解识记。

八.说教学反思

本节教学设想主要依据“学习者的知识是在一定情境下,借助于他人的帮助,如人与人之间的协作、交流、利用必要的信息等等,通过意义的建构而获得的。”教师是学习活动的组织者、意义建构的引导者、帮助者、促进者。”即“教师为主导,学生为主体”及“学生是信息加工的主体、是意义的主动建构者”等现代建构主义学习论,教学设计中注重“学生为中心及其能动作用”、“情境”与“协作学习”对意义建构的重要关键作用。以上说课,定有诸多不妥之处,恳请各位评委教师批评指正。

比的意义 9

教学目标:1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关系,明白比的后项不能是0的道理,同时懂得事物之间

是相互联系的。

3、进一步培养学生分析、比较、归纳、概括能力和自主学习的能力。

教学重点:理解比的意义,比与分数、除法的关系。

教学难点:理解比的意义

教学过程:

一、比的意义:

1、同类量的比

谁来向听课的老师介绍一下,我们班级的人数情况。

男生有多少人?女生有多少人?(板书)

如果把我们班的男生人数和女生人数放在一起比一比,可以得出什么结论?

男生人数比女生人数少

你能用一个式子来表示吗

用减法。27-19

从这个式子里,还可以得出什么结论?

女生人数比男生人数多

除了减法之外,你还能想出其它比较的方法吗?

可以用除法。

可以算出什么?

男生人数是女生人数的几分之几?女生人数是男生人数的多少倍?

会列式吗?

19/27    27/19像这样用除法对两个量进行比较时,还有一种新的表示方法:比。(板书课题)

求男生人数是女生人数的几分之几,是哪个量和哪个量比较?

像这样的求男生人数是女生人数几分之几,又可以说成男生和女生人数的比是

19比27

谁来说一说,求男生人数是女生人数几分之几还可以怎么说?(学生重复一遍)

请同学们再看一看,求女生人数是男生人数的几倍,是哪个量和哪个量比较?

根据上面的例子,想一想,女生人数是男生人数的几倍还可以怎么说呢?

27比19

通过上面的例子我们知道,谁是谁的几倍或几分之几,都可以说成谁和谁的比。2、不同类量的比

在日常生活中,对两个数量进行比较的例子还有很多。例如在路上行驶的汽车。

出示:一辆汽车2小时行驶90千米。

你能把什么算出来?

也就是汽车的速度。列式:90/2=45(千米)

同学们请看,求汽车的速度,实际上是用哪两个量进行比较?

那么汽车的速度又可以说成谁和谁的比?

启发学生:汽车的速度又可以说成路程和时间的比是90比2常见的数量关系里,因为单价=总价/数量,所以单价可以说成是谁和谁的比?

工作效率可以说成是谁和谁的比?3、揭示比的意义:

刚才的这些例子在列式时有什么共同的地方?

都是用除法来计算的

都可以说成谁和谁的比是多少?

由此可见,两个数的比是表示两个数之间的什么关系?

对,具有相除关系的两个数量进行比较时,都可以说成两个数的比。5/8可以说成谁和谁的比?15/26呢?

4、反馈练习:

出示一面国旗。长是5分米,宽是3分米。

根据上面的信息,你能说出哪些比?

二、自学比的其它知识

通过上面的学习,同学们已经理解了比的意义,在教材的52-53页,还

涉及到了一些关于比地其他知识,能自己研究解决吗?

学生自学3分钟

谁来汇报一下,通过看书自学,你又了解了有关比的什么知识?学生可能从以下几个方面进行汇报:(可不按顺序)

(1)各部分的名称

在写比号时,有什么要提醒大家的。

说出下面每个比的前项和后项,并求比值。

14:21   5/9  0。5:2。5  2/9:1/3

(2)比的分数写法。

把下面的比改写成分数形式。

25:100    21:18

(3)比同除法、分数的关系。

列表出三者的关系

引导学生:比的后项有限制吗?为什么不能是0。

足球比赛中为什么会出现2:0这种写法呢?

刚才我们说了比、分数和除法之间的联系。那三者又有什么区别呢?

可让学生讨论。

小结:比是两个数的除法的关系;分数是一个数;除法是一个运算。 三、巩固练习:

看来同学位自学的效果很不错,老师这里还有几个小问题请同学们帮忙解决一下。

1、填空:

小华家养了12只鸡,9只鸭。

鸡和鸭只数的比是    ,比值是     。

鸭和鸡只数的比是     ,比值是     。

买3千克苹果用了7.5元。

买苹果的总价和数量的比是 ,比值是 。2、练习十二第1题。3、小强的身高是1米,他爸爸的身高是173厘米。小强说他和他爸爸的身高的

比是1:173。小强说的对吗?4、用一辆汽车运货,上午运了5次,共运20吨;下午运了6次,共运24吨,

你提出哪些有关比的问题?

四、本课小结。

比的意义教学设计及反思 10

教学目标

知识与技能:理解比的概念及其表示方法;掌握求解简单比例问题的方法。

过程与方法:通过小组合作探究学习,提高解决问题的能力;通过案例分析加深对比的理解。

情感态度价值观:培养学生对数学的兴趣,增强应用意识;鼓励学生勇于探索未知领域。

教学内容

比的基本定义

比的'表示方式(分数形式、冒号形式等)

简单的比例计算

实际生活中比的应用实例

教学过程

一、导入新课

从生活中的例子出发(如食谱中的配料比例),引导学生思考什么是“比”,激发学习兴趣。

二、讲授新知

介绍比的概念:解释比是用来描述两个数量之间相对大小的关系,可以用分数或冒号的形式表示。

演示比的使用:通过具体的例子(例如地图上的比例尺)展示比是如何被用来解决问题的。

练习巩固:给出几组数据让学生尝试自己构造比例关系,并讨论其合理性。

三、实践活动

分组活动:每组选择一个主题(比如烹饪、建筑模型制作等),利用所学的知识制定计划并实施。过程中需要记录下所有涉及的比例关系。

分享交流:各小组向全班汇报自己的项目成果以及遇到的问题和解决方案。

四、总结反馈

回顾本节课的重点内容。

对于活动中表现突出的学生给予表扬。

收集学生的反馈意见,了解他们对于这节课的感受和建议。

教学反思

优点:采用生活化的情境引入课题能够很好地吸引学生的注意力;通过实践操作让理论知识变得具体可感。

不足之处:部分学生可能因为基础薄弱而感到困难,在今后的教学中应更加注重基础知识的复习巩固。

改进措施:可以考虑增加更多层次分明的例子来适应不同程度学生的需求;同时加强个别辅导,确保每位同学都能跟上进度。

比的意义教案 11

教学内容:比例的意义、基本性质,比例各部分名称,组比例。

教学目标:

1. 使学生理解比例的意义,认识比例各部分的名称。

2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

教学重点:比例的意义和基本性质。

教学难点:理解比例的基本性质。

教学过程:

一、 复习

1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

2、 求下面各比的比值,哪些比的比值相等?

12:16 : 4.5:2.7 10:6

二、 新授

提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

1、 比例的意义

出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

从上不中可以看到,这辆汽车:

第一次所行台的路程和时间的比是____;

第二次所行驶的路程和时间的比是____;

这两个比的比值各是多少?它们有什么关系?

(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

板书:80:2=200:5 或 =

师:这样的式子,我们给它一个名字叫做比例。

(2) 口答

A、把复习第2题中两个比值相等的比用等号连起来。

B、用等号连接起来的式子叫做什么?

C、根据刚才的回答,你能说出什么叫比例吗?

(3) 小结。

A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的`两个比可以组成比例,比值不相等的两个比就不能组成比例。

(4) 练习,课本第10页做一做。

2、 比例的基本性质。

(1) 比例各部分的名称。

引导学生观察黑板上的例题:80:2=200:5

并自学课本

提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

(2) 说出下面各比例的外项和内项?

6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

(3) 计算:上面比例中的外项积与内项积。

(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

(5)你能得出什么结论?

三、 巩固练习

1、 完成第2页的做一做。

2、 完成第3页的做一做第1题。

四、 总结

1、 比例的意义和基本性质是什么?

2、 怎样判断两个比能否组成比例?

五、 作业

1、 完成练习四的第1-3题。

比的意义 12

教学目标 

1.理解,掌握比的读法和写法,认识比的各部分名称。

2.掌握求比值的方法,并能正确求出比的比值。

3.培养学生抽象、概括能力。

教学重点

理解,掌握求比值的方法。

教学难点 

理解,建立比的概念。

教学过程 

一、谈话引入

在日常生活和和工农业生产中,常常需要对两个数量进行比较。比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比。(板书:)

二、讲授新课

(一)教学例1

例1.一面红旗,长3分米,宽2分米。长是宽的几倍?宽是长的几分之几?

板书:3÷2= =      2÷3=

1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

3.小结

(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几。

(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比。

4.练习

有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

(二)教学例2

例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

1.求的是什么?谁除以谁?也就是谁和谁进行比较?

2.汽车行驶路程和时间的比是100比2表示什么?

3.思考:单价可以说成是谁和谁的比?

工作效率可以说成是谁和谁的比?

商可以说成是谁和谁的比?

4.小结

通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比。

(三)归纳总结

引导学生观察板书 ,什么叫比?

教师板书:两个数相除又叫做两个数的比。

(四)练习

1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是(   ),柳树和杨树棵树的比是(   )

2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是(    ).

3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是(   ),青菜和萝卜单价的比是(    ).

(五)比的各部分名称和求比值的方法(演示课件)

1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了。

例如:  3比2        记作:3∶2

2比3        记作:2∶3

100比2      记作:100∶2

2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

板书:

3.提问:比的前项和后项能随便交换位置吗?为什么 ?

4.练习:求比值

教师说明:求比值不写单位名称。

(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)

1.教师提问

(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

(2)为什么要用“相当于”这个词?能不能用“是”?

(3)在除法中,除数不能是零,那比的后项呢?

2.比的分数形式

(1)教师:比还有一种表示方法,就是分数形式。例如:

板书:3∶2可以写成 ,仍读作“3比2“

2∶3可以写成 ,仍读作“2比3”

(2)思考:比和分数有什么关系?

三、巩固练习

(一)填空

两辆汽车,甲车4小时行驶200千米,乙车3小时行驶180千米。

1.甲车的速度可以说成(  )和(  )的比,是( )∶( ),比值是( ).

2.乙车的速度可以说成(  )和(  )的比,是( )∶( ),比值是( ).

3.甲、乙两车所行路程的比是( ).

4.甲、乙两车所用时间的比是( ).

5.甲、乙两车所行速度的比是( ).

(二)选择

1.大卡车载重量是5吨,小卡车载重量是2吨,大小卡车的载重量比是 .( )

2.如果a是b的3倍,那么a和b的比是1∶3.(   )

3.小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1∶173.(   )

(三)思考题

1.甲乙两队比赛结果是3∶2,是指这节课所学的比吗?

2.根据男、女生人数的比是4∶5,你可以知道男女生的具体人数吗?

3.一台机器上有大小两个齿轮,大齿轮有100个齿,每分钟25转;小齿轮有40个齿,

每分钟120转。根据所给条件,你可以写出哪些比?

四、课堂小结

今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?

五、课后作业

(一)应用题,

1.小红3小时走了11千米。写出她所走的路程和时间的比。

2.航空模型小组8个人共做了27个航空模型。写出这个小组做的模型总数和人数的比。

3.商店一共运来8.2吨水果,其中有3.5吨是橘子。写出运来橘子的重量和运来水果的总重量的比。

(二)求比值。

4∶5 0.8∶0.4

六、板书设计 

《比的意义》教学反思 13

1、数学课堂教学中,培养学生的创新意识、创造能力需要学生有一定的基础。

首要的是学生要具备与所学新知有关的知识基础,其次是学生要有原有知识与新知进行沟通、联系的思想基础。

由于教学前对学生的这两个基础不是很有把握,所以在课前谈话中有意识的设置了数学语言、名称与特定数学符号的对应关系。

回顾整节课,发现我当初的担心是多余的,因为这个班的学生很好的具备了这两个基础。课堂上学生因为有了这两个扎实的基础储备,所以自己创造了比的意义、比值的概念、比号等比中各部分的名称,概括了求比值的方法。

2、课�

但是,这无形中对教师的课堂教学水平提出了更高的要求,抓住了学生转瞬即逝的创造点,合理重组学习资源,那么教学会更精彩,课堂更富活力。

孩子的创造欲望决定了整堂课的生命。尽管在课堂中好几个地方我都能做到不遗漏学生的一个个闪现灵性的创造点,但由于自己在某些环节的预设上发生方向偏差,主要原因还是对学生缺乏了解、课件的制作缺少互动。如:

(1)在让学生猜测比的各部分名称时按自己的预设学生肯定会先想到比号,而事实是有学生先想到的却是比值,而且理由说的也清清楚楚,有根有据,如果课件是互动的话,那就很容易解决了这个问题。

(2)当学生总结出求比值的方法后,没有设计练习题目让学生得到及时的练习。

(3)关于比与除法、分数之间的关系没有得到强化。

3、对学生学习情况进行检验环节中。

前几个题目从学生的反馈效果看,还是相当理想的,不仅进一步理解了比的意义,而且训练了学生的思维,学生的说、做都相当精彩。后面由于时间的原因,练习中对求比值的练习还没有来得及完成。

我在教学比的意义这一节课时主要运用了以下方法教学。

1、迁移猜想:我先组织学生复习商不变的性质和分数的基本性质,引导学生结合除法、分数和比三者之间的关系,猜想出比的基本性质。

2、验证概括:学生猜想出比的基本性质后,再引导学生任意写出—个比,对照猜想出的比的基本性质进行验证,从而概括出比的基本性质。

3、动态生成:在学生概括出比的基本性质后,引导学生小结出整数比的化简方法:用比的前项和后项的最大公约数分别去除比的前项和后项。

小结化简整数比的方法后,我便问学生,在我们的日常生活和学习中,除整数比需要化简外,还会遇到哪些比需要化简?学生讨论后,得出还有分数比、小数比需要化简。这时我又突然想到了整数、分数、小数的混合比需要化简。

于是,便萌发了师生互动,动态生成这一知识的念头。在我的不断引导下,学生说出了整数与分数比、整数与小数比、分数与小数比也需要化简。在此基础上,我让学生列出以上各种类型的比,并留足一定的时间给学生独立思考、自主探究其中一种比的化简过程,然后小组合作讨论化简比的方法,最后全班交流总结各种比的化简方法。

但此时全班交流总结尚未结束,下课铃声响了,我只好草草收兵,结束教学。学生对常见的三类比(整数比、分数比和小数比)的化简方法印象浮浅、理解不清、掌握不到位,课堂教学的基本目标都没有完成,更别说动态生成让学生理解、掌握混合比(整数与分数、整数与小数、分数与小数)的化简方法了。

比的意义 14

课题一:比的意义(a)

教学内容

教科书第46~47页和相应的“做一做”,练习十二的第1~4题。

教学目的

1.理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2.弄清比同除法、分数的关系。

教具准备

长3分米、宽2分米的红旗一面,投影仪。

教学过程

一、复习

教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?

引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。

板书:3÷2==1……………长是宽的1倍

2÷3=……………………宽是长的

二、新课

1.导入新课。

教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)

教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)

2.教学比的意义。

教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?

(长和宽比较。)

红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?

(长和宽比较也就是3和2比。)

求红旗长是宽的几倍又可以说成长和宽的比是3比2.(板书:长和宽的比是3比2.)

(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?

引导学生说出:宽和长的比是2比3.教师板书。

小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。

教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?

引导学生回答:3比2是长和宽的比,2比3是宽和长的比。

这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。

教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):

“一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?

求汽车行驶的速度怎样计算?

学生回答时,板书:100÷2=50(千米)

100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?

(路程和时间比较。)

那么汽车行驶的速度又可以说成路程和时间的比。

教师:在这个例子中,路程和时间的比是几比几?

学生回答后教师板书:路程和时间的比是100比2.

教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)

学生回答后板书。

再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。

(教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。

从比的意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。

3.教学比的读写法,各部分名称及求比值的方法。

教师:以上我们学习了比的意义,在数学中,比还有这样的记法。

3比2记作(板书:记作),先写3,再写“∶”,最后写2.(板书:3∶2)

提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2.让学生齐读一遍。

2比3记作(板书:记作),先写什么?再写什么?最后写什么?

教师提问,学生回答后教师板书。

100比2怎么写?学生回答后,教师板书:100∶2.

这两个比会读吗?齐读一遍,学生练习写比。

教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)

根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2.)3除以2的商是多少?(1)

教师指出:我们把比的前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。

板书:3 ∶ 2=3÷2=1

┇ ┇ ┇    ┇

前 比 后    比

项 号 项    值

教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。

前项

∶(比号)

后项

比值

除法

被除数

÷(除号)

除数

列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。

教师提问:那么,比和比值有什么区别和联系呢?

引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2.)

需要指出:比的后项不能是零。

让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0.同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的几比几是不能化简的。

4.做教科书第62页上半部分“做一做”的题目。

(1)完成第1题。

指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。

然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?

教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。

(2)完成第2题。

让学生独立完成,教师巡视,做完后集体订正。

5.教学比与分数的关系。

教师:两个数的比也可以写成分数形式。例如:3∶2可以写作,在这里,它表示两个数的比,仍读作3比2.

让学生齐读。

进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。

提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)

提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?

引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:

前项

∶(比号)

后项

比值

除法

被除数

÷(除号)

除数

分数

分子

──(分数线)

分母

分数值

列完表后,提问:比和分数有没有区别呢?

让学生明确分数是一种数,而比表示两个数相除的关系。

总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。

6.做教科书第62页下半部分“做一做”的题目。

让学生独立完成,教师巡视。

集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。

三、巩固练习

1.做练习十二的第1题。

(1)做第(1)题。

教师提问:路程和时间的比是两个同类量的比,还是不同类量的比?(不同类量的比。)

路程和时间的比,得到的是什么量?(速度。)

教师指出:路程和时间的比表示的意义就是速度。

然后让学生独立做在练习本上,最后集体订正。

(2)做第(2)题。

先让学生独立完成,教师巡视。

集体订正时,让学生说说模型总数和人数的比表示的意义是什么。(表示的是平均每人做的模型数。)

(3)做第(3)题。

让学生独立完成,集体订正。

2.做练习十二的第2题。

让学生独立完成,教师注意巡视。完成后集体订正。

3.做练习十二的第3题。

让学生独立完成。集体订正时,可以让学生对比一下两个比值的关系,指出这种关系是一种反比例关系,今后要进一步学习。

4.做练习十二的第4题。

先让同桌的两名同学讨论对不对,教师注意旁听学生的讨论情况,然后指名学生回答自己的讨论结果。

教师指出:小强和爸爸身高的比属于同类量相比,同过去求一个数是另一个数的几倍或几分之几一样,相比的同类量的单位大小不一致时,比就失去了它的意义。因此,要求小强和爸爸身高的比,就要先把两个数量化成同单位的数。所以小强和爸爸身高的比应该是100∶173.

《比的意义》教学反思 15

《数学课程标准》倡导自主探究、合作交流、实践创新的教学学习方式,强调从学生的生活经验和已有的知识背景出发,为学生提供充分的从事教学活动和交流的机会,促使他们在自主探究的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,同时获得广泛的数学活动经验。

本节课的教学中,我就是采取了合作探究与自主学习相结合的教学方式,重视了学生知识的形成与发展过程,注重了学生观察、类比、分析、概括和自学等能力的培养。整节课安排有序,环环紧扣,变化有致,既有高潮又有适时调整,课堂教学自然流畅,活而不乱,教与学的双边关系处理得非常好,充分体现了勇于创新的精神。关注学生独立思考,自主探究和合作交流。具体表现在:

1、指令性活动向自主探究转化。教师通过提供学习材料使学生始终处于观察、探究、交流等高层次的思维活动之中。

2、问答式教学向学生独立思考基础上的合作学习转变。

3、学习过程从封闭预设走向开放、生成。

学生学习的数学应是生活中的数学,是学生“自己的数学”。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。教学中的教与学联系生活,让学生感受到比在生活中无处不在。由于“比的意义”内容繁杂,在一开始,根据内容特点和学生的认知规律,紧密联系生活实际,让学生观察生活中的比,初步感知比,使学生对比感兴趣,非常乐意探究知识,巧妙地导入新课。在出示例题后,组织学生围绕“比”的问题去研究、探索、讨论、概括、总结,实现了自主学习,这样,尊重学生的主体地位,培养创新精神。

比在数学中是一个重要的概念,体会比的意义和价值是教材内容的数学核心思想。但在实际中,学生记住“比”概念容易,但要真正理解比的意义往往比较困难。于是,我没有采取给出几个实例,就直接定义“比”的概念,而是以系列情境为学生理解比的意义提供了丰富的直观背景和具体案例。这样易于引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生体会引入比的必要性以及比在生活中的广泛存在。这样既不显得单薄,也不显得零碎,利于学生探究和掌握知识。

采取自主学习的形式,促进了学生能力的发展。知识、能力并重是现代人素质培养的要求,也是成功学习的内在规律。学生掌握知识仅仅是教学活动的一个方面,更重要的是要对学生进行情感、态度、价值和自学能力的培养。本节课中“比的读写”、“比的构成”、“比的各部分名称”“求比值”等都是比较浅显的知识。教学时我不断把学习的主动权交给学生,让他们自主学习,然后通过集体讨论反馈认识,这样的课堂是学生的课堂,真正体现了学生的主体地位。

比的意义 16

注:此教案是在学生使用课前预习卡基础之上

比的应用

教学目标:

1、运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义。

2、感受比在生活中的广泛应用,提高解决问题的能力。

教学重点:

理解按一定的比来分配一个数量的意义。

教学难点:

根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地运用乘法求各部分量。

教学过程:

一、        谈话导入:

同学们,我们已经认识了比,那么比在生活中有什么用途呢?这节课我们就来探究一下比在生活中的应用。

二、        交流预习情况:

1、集体订对获取的数学信息及提出的问题

师板书摘要:

信息:一筐橘子,分给大班和小班,已知大班30人,小班20人

问题:怎么分合理?能不能按比分配?

2、小组交流解决问题的策略(要求小组每人发言)

3、小组汇报:

方案一:大班30个,小班20个,分完为止;

方案二:大班3个,小班2个,分完为止;

方案三:大班30个,小班20个,剩下的平均分;

方案四:大班往小班去5人,然后平均分;

方案五:数清橘子总数,除以总人数,再用每人所分个数乘各班人数即各班所得;

方案六:将橘子平均分成5份,大班3份,小班2份;

……

4、针对方案同学提出疑义,并作出更改;

在解决疑问中,明确和以前所学的平均分有所不同。

更改如:大班30个,小班20个,剩下的不能平均分,要按3:2分才合理;

5、比较发现合理方案的共同点:不管怎么分,都要保证最终两个班分到的橘子数量的比要和两班的人数比相等。

三、 尝试解决问题:如果共有140个橘子,该怎么分?

同桌交流后列式解决,指生上堂板演并讲解解题思路:

解法一:30:20=3:2    3+2=5   140÷5=28(个)

大班:28×3=84(个)    小班:28×2 =56(个)

解法二:30:20=3:2    3+2=5

大班:140× =84(个)  小班:140× =56(个)

四、师生总结解题方法

今天遇到的问题不是平均分,而是按一定的比进行分配的问题,我们是把按比分配的问题转化成了以前的平均分问题,只是要按比所表示的份数平均分。

思路:已知整体,按比把它分成两部分或几部分,求各部分。

板书:总数量× =各部分的数量

数学比的意义教案【优秀28篇】

独立完成,集体订正

六、 小结(学生小结,师生补充)

板书设计:

比的应用

总数量× =各部分的数量

比的意义 17

“比的意义”教学设计

教学目标 :

1、理解比的意义,知道比的各部分名称,会读、写比及求比值。

2、理解比同除法、分数的关系。

3、进一步培养学生分析、概括能力。

4、渗透知识源于实践及事物间的相互联系、发展变化等辨证唯物主义的基本观点。

教学重点:理解比的意义

教学难点 :把两种量组成比,并在此基础上求比值

教学关键:理解比与除法的关系

教学过程 :

(一) 创新情境、复习迁移

创新情境:六(1)班参加电子计算小组男生人数有5人,女生有4人。

同学们看到这些信息,你们知道哪些问题?

可能会出现六种以上比较的方法:1、男生人数比女生人数多1人。2、女生人数比男生人数少1人。3、男生人数是女生的 倍。4、女生人数是男生的 。4、男生比女生多25%。6、女生人数比男生少20%。

对在日常生活中,我们经常对某些数量进行比较。

除了以上六种比较的方法,你还知道其他比较的方法吗?想不想知道?今天我们就来学习一种新的数量比较的方法。

揭示课题:比的意义(板书)

同学们,这节课你想知道些什么?

(二) 探索发现、学习新知

(1) 概括比的意义

A:出示例1:

男生人数是女生的 倍,怎样求?谁和谁进行比较?

5÷4=两数相除(板书)5 、4和 分别表示什么?

男生人数是女生的 倍,是男生人数与女生人数进行比较。我们又可以说男生人数与女生人数的比是:5比4 两个数的比(板书)

女生人数是男生的 ,怎样求?谁和谁进行比较?

4÷5=(板书)4 、5和 分别表示什么?

男生人数是女生的 ,是女生人数与男生人数进行比较。我们又可以说女生人数与男生人数的比是:4比5 (板书)

B:出示例2:一辆汽车3小时行驶180千米,求这辆车的速度。

180÷3=60(千米) (板书)180 、3和60分别表示什么?

谁把它能说成两个数量的比?

汽车每小时行驶60千米又可以说成:汽车行驶的路程与时间的比是180比3(板书)。

60千米是谁与谁的比的结果?

概括比的意义:

5÷4=5比4

4÷5=4比5 讨论:谁能说一说什么叫做比。

180÷3=60(千米) 180比3 (两个数相除又叫做两个数的比)

练习:试一试

1、 李强植树6棵,张明植树5棵。说出李强和张明植树棵数的比。

2、 3支圆珠笔的总价是6元,圆珠笔的单价是多少元?说出圆珠笔总价和数量的比。

练一练

甲 (1)甲、乙两个长方形周长的比是( )比( )。

3米 (2)甲、乙两个长方形面积的比是( )比( )。

乙 1米

5米 8米

3、大小两个齿轮,大齿轮每分钟转25转,小齿轮每分钟转92转。大、小两个齿轮转数的比是( )。

4、六(2)班有男生24人,女生23人,写出男生和女生人数的比是( )。再分别写出男生和全班人数的比是( ),女生和全班人数的比是( )。

(2) 学习比的读写法及各部分的名称

表示除法的运算符号是除号。那么表示的比的符号叫什么呢?(比号)

我们来写一个比号。5比4写作 5:4,读作 5比4。

前项 后项

比号

练习:练一练

读出下面各个比:120: :1 1.6:1.8

(3) 学习求比值的方法

既然两个数相除叫做比,那第5:4如何进行计算呢?

5:4=5÷4=计算结果叫做什么?比值:比的前项除以后项所得的商,叫做比值。(完善各部分名称)

比值

讨论:比和比值一样吗?

练习:练一练

求出下列各个比的比值:

45:135 0.42:0.14 :1 1.8:2

(4) 探究比与除法、分数之间的关系

通过以上学习和探索,我们知道了什么叫做比,了解了比的各部分名称,学会了如何来求比值,请大家想一想,比跟什么关系最密切?(除法、分数)

比还可写成分数形式,5:4可以写成 ,还读成5比4,说一说比的前项是几?后项是几?分数形式的比与分数的写法也不一样,教师示范写法。

板书: 比号

练习:把下列比写成分数形式的比:21:100 32:15

请你与分数 作一下比较,有什么联系和不同?(比的前项、比号、后项、比值相当于……意义不同,读法不同,写法不同)

下面我们来研究一下比与除法、分数的关系:

联 系 区 别

5:4 前项(5) 比号(:) 后项(4) 比值

一种关系

5÷4 被除数(5) 除号(÷) 除数(4) 商

一种运算

分子(5) 分数线( )

分母(4) 分数值

一个数

通过生活中的实例让学生理解:比的后项能不能为零?体育比赛的比分和我们今天的学习的比一样吗?

(三) 反馈矫正,贯穿全课

综合练习:

1、有4只羊共重140千克,羊的总重量和只数比是( ):( ),比值是( )。

2、3÷8=( ):( )=

=( )÷( )=( ):( )

23:8=( )÷( )=

3、甲数除以乙数的商是1 ,甲数与乙数的比是( )。

4、甲数是乙数的65%,甲数与乙数的比是( )。

5、小康村今年粮食比去年增产10%,今年与去年粮食产量的比是( )。

6、 1小时: 15分钟的比值是( )。

(四) 全课小结

同学们,今天这节课我们学习了什么?你还想提出什么问题?

数学比的意义教案 18

教学要求

①使学生进一步理解整除的意义。

②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。

③培养学生抽象概括与观察思考的能力。

教学重点、难点

理解除尽和整除,约数和倍数等概念间的联系和区别。

教学过程

一、创设情境

1、计算下面三组题。

(1)237= (2)65= (3)153=

113= 1.83= 242=

2、观察并回答。

(1) 上面哪个算式中的第一个数能被第二个数整除?

(2) 在什么情况下,才可以说一个数能被另一个数整除?

(3)如果用整数a表示被除数,整数b(b0)表示除数,可以怎样说?(让学生看教材第49页关于整除的一段话)

3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

①被除数、除数都是整数,除数不等于0

明确三点 ②商必须是整数 缺一不可

③商的后面没有余数

4、除尽与整除的区别与联系。

(1)像65=1.2 1.83=0.6我们只能说第一个数能被第二个数 。

(2)除尽 被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。

整除 被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)

师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:)

二、探索研究

1.小组学习。

(1)让学生看教材第50页有关约数和倍数的一段话。

(2)小组讨论:两个数在什么情况下才有约数和倍数关系?约数和倍数是相互依存的是什么意思?

(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?

(4)倍与倍数意义一样吗?

如:15是3的倍数,表示15 能被3整除。

1.5是0.3的5倍,5倍表示1.5除以0.3的商。

(5)注意事项。让学生看教材第50页的注意。

三、课堂实践

1.做教材第51页的做一做。

2.做练习十一的第1题。

3.做练习十一的。第2题。

4.做练习十一的第3题。

5.做练习十一的第4题。

60的约数有 。

6的倍数有 。

四、课堂小结

学生小结今天学习的内容。

数学比的意义教案 19

教学目标

1、加深认识比的意义和基本性质,能说出一个比的具体含义,能比较熟练的应用比的基本性质。

2、进一步认识求比值与化简比的联系和区别,以及比与相关知识之间的联系与区别。

教学重难点

进一步认识求比值与化简比的联系和区别,以及比与相关知识之间的联系与区别。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 揭示课题

二、基本题练习

三、综合练习

四、课堂小结

五、作业

前两年级课我们学习了什么内容?

这节课,我们来练习比的意义和基本性质。

1、提问:比的意义是什么?比与除数、分数有什么联系?

2、提问:根据比与除法的关系和比值的意义,怎样求比值?

3、提问:比的基本性质是什么?比的。基本性质有什么用途?

4、做练习十二题12

5、问:求比值和化简比的依据是什么?有什么区别?

1、做练习十二第13题

问:盐水是怎样配制的?盐水的重量是多少克?

在配制的盐水里盐的重量占几份,水的重量占几份?盐水的重量可以看成几份?

2、做练习十二第15题

问:哪几题的结果是相同的?为什么会相同?

3、口答题(见课件)

这节课练习了什么内容?通过练习你们进一步了解了哪些知识?

做练习十二第14、16题

课后感受

同学们能比较熟练的应用比的基本性质。

比的意义 20

比  的  意  义

教学内容:书第68-69页例1、例2,试一试、练一练和练习十三的1—5题。

教学目标

1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

教学重点:理解比的意义。

教学难点:理解比与分数、除法的关系。

教学准备:多媒体课件。

教学过程:

一、谈话导入

1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)

2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?

二、教学例1

(一)、呈现例1

1、利用旧知进行比较:

(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)

相差关系{牛奶比果汁多1杯   倍数关系{果汁的杯数相当于牛奶的2/3

果汁比牛奶少1杯            牛奶的杯数相当于果汁的3/2

(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。

2、“比”的教学:

(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)

3、“比”的读写:

(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)

(2)指导学生写:3比2怎么写呢?谁来写一写?

(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项  后项)

(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?

4、比是有序概念

(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?

(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。

(二)、完成试一试

(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?

(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?

(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)

三、教学例2

(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。

1、 想一想,我们怎样求两人的速度?

2、 2、学生计算答案,汇报填表。

3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)

4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)

(二)、理解比的意义

1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比     两个数相除)

2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)

(三)、认识“比值”、及与“比”的区别:

1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?

我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?

2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?

3、 你能说出例1中的各个比的比值分别是多少吗?

4、 讨论:同学们觉得比与比值的区别在哪里?

(比表示两个数相除的一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)

(四)、“试一试”

1、 完成“试一试”:(学生独立完成,指名板演)

2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)

(五)、比、除法和分数的关系

1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)

相互关系

区别

前项

比号(:)

后项

比值

除法

分数

2、比的后项为什么不能是0?

四、巩固练习

1、 完成“练一练”的1、2、3小题。

2、 判断题。

(1)3/4只能读作四分之三。   (       )

(2)比的后项不能是零。       (       )

(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。      (       )

3、 完成练习十三的第3、4题。

4、 糖水的甜度

(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)

你知道哪一杯水更甜吗?为什么?

(2)(出示第三杯糖水,标出糖4克,水100克。)

你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?

(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?

5、 知识介绍:

同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”

五、总结:

今天我们学习了什么?你们有什么收获吗?还有什么问题吗?

六、布置作业:p72练习十三的1、2、3、5

板 书 设 计

相差关系{牛奶比果汁多1杯   倍数关系{果汁的杯数相当于牛奶的2/3

果汁比牛奶少1杯            牛奶的杯数相当于果汁的3/2

2比3记作2∶3   分数形式

两个数的比       两个数相除            一种相除关系

《比的意义》教学反思 21

为了较好实现本节课教学目标,在这节课中遵循学生的认识规律,坚持以学生为主体,教师为主导的原则,重视知识的形成过程。让学生在积极主动、愉快和谐的氛围中学习新知、培养能力。反思这节课教学的整个过程,主要有以下几点得失。

一、培养学生发现问题、解决问题的能力。

数学来源于生活,也服务于生活,在现实情境中体验和理解数学,这节课充分体现了这一教学理念。课始,教师以学生非常熟悉的东西——不同型号的国旗说起,引出教室黑板上的国旗的大小和升旗时的国旗的大小不同,从而引出国旗的大小虽然不同,但是它们的长与宽的比确实有密切联系的,引出比的初步认识,接着又联系了生活实际,举例生活中哪些地方存在比的关系,让学生充分发言,从而使学生感到数学来源于生活,生活中处处有数学

二、培养学生的自学能力。

体现了学生是学习的主体,教师是组织者、合作者这一教学理念。例如:我在介绍了比的意义后,出示自学提纲:

1、比的读写方法。

2、比的各部分的名称分别叫什么?

3、什么是比值?怎样求一个比的比值。

4、比值可以怎样表示?

5、比和比值有什么联系和区别?

放手让学生自学,培养了学生的自学能力。

三.培养学生独立思考、自主探索、合作交流的能力。

例如:在处理比与除法和分数的联系和区别这一教学难点时,用分组讨论等一系列的数学活动,使他们在活动中相互交流,相互启发,相互鼓励,共同体验成功的快乐,与此同时,也使学生感悟到了事物间的相互依存,相互转化。

四、新课失误的一点是没有掌握好教学时间。

最后一个环节虽然自己设计了,但在课堂中没有完成。也就是当学生认识比的后项不能是零这一知识点后,已经没有时间指出体育比赛中的“比”与这节课所学生的“比”是完全不同的两码事,没有讲明体育比赛中的“比”只是记录得分的一种形式,所以可以是以“几比零”的形式出现。只能在下节课中涉及。

总之,这节课有得也有失,本课的教学方法灵活多变,课堂气氛融洽,真正以学生为本,以学生为主体,重点突出,难点突破,学生在轻松愉快的氛围中学习教学内容!

《比的意义》教学反思 22

比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系。虽然比和除法、分数有着密切联系,但又不完全等同,比更强调的是量与量之间的倍比关系的直接描述,有时并不关注具体比值是多少,而除法、分数更多的是强调两个量之间的一种运算关系,通常也会同事关注运算的结果。此外,我们可以用比同事表示两个、三个乃至更多的量之间的倍比关系,而除法、分数一般只能表示两个量之间的倍比关系。通过这节课的教学,学生能够理解比的意义,知道比与分数、除法的关系,但是对它们之间的区别还不够清楚。

比的意义教案 23

教学目标:

使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

教学重点:

分析题里所含的数量关系,把哪个数看作单位1。

教学难点:

怎样列出方程。

教学过程:

一、复习

列式计算,并口述把哪个数看作单位1。

(1)的是多少? ( )看作单位1。

(2)14的是多少? ( )看作单位1。

(3)1的是多少? ( )看作单位1。

二、新授

1、板书课题:列方程解文字题

2、出示例4:一个数的是,这个数是多少 ?

(1) 分析数量关系

提问

①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

②硬该把哪个数看作单位1?为什么?

③单位1所表示的数知道吗?

④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。

使学生明确:根据一个数乘以分数的意义。

由已知:一个数的是,得:一个数×=?

(2) 列方程解文字题。

第一步,设未知数为X。教师板书

解:设这个数是X。

第二步,根据题意列出方程。教师板书

X×=

第三步,解这个方程。教师板书:(略)

第四步,检验:(略)

第五步:作答

3、小结

(1)怎样设求知数?

要求单位“1”的量,设单位“1”的量为X。

(2) 样根据题意列方程?

找出题中数量之间的等量关系。

三、巩固练习

1、教科书第35页“做一做”。

2、一个数的1倍等于2,求这个数。

四、课堂练习

练习九第12、16—19题。

五、作业

练习九第13—15题。

六、课外思考

练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的`。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

《比的意义》教学反思 24

教学目标:1、通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分的名称,理解比和分数、除法之间的关系。

2、会正确写出两个数倍比关系的对应比,掌握求比值的方法,能正确求比值。

3、通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辩证唯物主观点。

4、培养学生抽象、概括能力.

教学重点:1.理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2.弄清比同除法、分数的关系。

教学难点:1.理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2.弄清比同除法、分数的关系。

教学准备:投影

教学过程:

一、 导入、揭题

出示:我们六(5)班有男生23人,女生21人。

师:根据这两条信息你能想什么办法对六(5)班男生、女生人数进行比较?

师选择: ⑴男生人数比女生多多少人?

⑵女生人数比男生少多少人? 师:请同学口头列式。

⑶男生人数是女生的多少倍? 板书:2321

⑷女生人数是男生的几分之几? 2123

师:从同学们对六(5)班男生和女生的比较中可知,比较的方法主要有两种:一种是什么?(求一个数量比另一个数量多多少或少多少),是比差关系。用什么方法?(减法)。另一种是什么?(求一个数量是另一个数量的几倍或几分之几),是倍比关系。用什么方法?(除法)。

师:今天这节课,我们主要来研究用除法对两个数量进行比较。

我们把用除法对两个数量进行比较的这种新的数学比较方法叫做--比。

今天我们一起来学习比的意义。

二、 探索新知

1、 教学比的意义

⑴指⑶ 师:2321,是谁和谁比?

师述:用新的数学比较方法说,求男生是女生的几倍,又可以说成

男生人数和女生人数的比是23比21(板书)。

扶放启发:请同学想一想,仿上例(指2123)那么2123又可以怎么说呢?

女生人数和男生人数的比是 21比23(板书)

⑵说一说:①苹果有4个,梨有5个。苹果和梨的关系怎么说?

②舞蹈兴趣小组有女生9人,男生4人。(同桌互说,后指名说)。

⑶师: 用比的方法不但可以对同类量进行比较,还可以对不同类的量进行比较。[ 同类量:师可结合上例简单说明]

师出示:一辆汽车2小时行驶100千米。

问:①求汽车的速度怎样计算?

1002=50(千米)(板书)

②(指1002)路程和时间的关系还可以怎么说呢?

路程和时间的比是100比2(板书)

师:路程和时间的关系可以用速度(即每小时多少千米)表示,也可以用比来表示。

⑷学生举例

举一个可以用比来表示两个不同类数量之间关系的例子。(同桌互说,后指名说)

⑸总结

①思考、讨论: 什么情况下两个数的关系可以用比来表示?

②指导学生看书

看看教科书上是怎么定义的?指名说一说答案,然后齐读。(划出两数相除点上着重号)自学比的读写法、比各部分的名称、比值、比和除法各部分的关系

⑴师:关于比,你还想知道些什么?

请同学们自学教科书第47页第一个做一做上面的内容。

⑵汇报:通过自学,你知道了什么?

①比的读写法

指23比21;21比23;100比2 ,问:还可以怎么写?(学生练习)。怎么读?(齐读)

②比的各部分名称、

说一说比的前项、后项和比值分别是什么?

③比值。

师:如何求比值?

[反馈练习]

①说一说比的前项、后项和比值分别是什么?

8︰11=811=8/11 1/4︰1/3=1/41/3 =3/4 1.2 ︰0.3=1.20.3= 4

②抢答。教师出条件,学生抢答比值。

比的前项是100,后项是2,比值是()

比的前项是21,后项是23,比值是()

比的前项是2.4,后项是3,比值是()

③做一做

a、有5个红球和10个白球,写出红球和白球个数的比,再写出白球和红球个数的比,并分别求出比值。

b、某种型号的文具盒,每1箱装12只,共计人民币72元,写出这箱文具盒的元数与只数的比,并求出比值。(说一说比值表示什么意思)

④比和除法各部分的关系

①比的后项为什么不能为0?

②足球比赛中的0︰0,是不是我们数学上所说的比?

3、 继续自学两个做一做中间的内容

⑴让学生说说通过自学,你又明白了什么?

⑵想一想,辨一辨:

既可以看作一个分数,又可以看作一个比,还可以看作比值。

⑶继续汇报,完成表格

⑷反馈练习

变一变, 填一填

319=( )︰( ) 21︰100 =( )/( ) 4/23=( )︰( )

1/8=1︰( )=( ) 8 A︰B =( )( )=( )/( )

( )︰( )= ( )7=5/( )

⑸找一找,比、除法、分数分别表示什么?(区别,完成表格)

一种数 一种相除的关系 一种运算

三、 课堂总结

通过刚才的学习,同学们都学会了哪些知识?

四、综合练习

1、讨论:小强的身高1米,他爸爸的身高是173厘米。 小强说他和他爸爸身高的比是1︰173,对不对?�

(看谁会动脑筋,能根据题目中提供的信息,寻找合适的量,自己提出多种多样的问题,并说说这些量之间的比)。

《比的意义》教学反思 25

比的意义是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。还有每个比中两项的名称和比值的概念,比值的求法,以及比和除法、分数的关系,注意:比的后项不能是0。本课的教学重点是理解和运用比的意义及比与除法、分数的联系;教学难点是理解比的意义。

在学习比的意义的时候,考虑到学生对“比”缺乏感性上认知,所以在教学时我力求体现以下几点:

一、从生活实际出发,联系学生已有的知识引入新知。

这节课我先出示2杯果汁和3杯牛奶,学生能根据所给的数量提出许多问题,有选择把问题写在黑板上并用算式表示。牛奶的杯数是果汁的几倍,果汁的杯数是牛奶的几分之几,可以用我们学过的除法算式来解决,今天我们来研究对两个量比较的一种新的表示方法,引出比的意义教学。

二、加强知识间的联系,促进学生主动学习。

在这部分中,因为分数、除法、比有着密切的联系,在教学比的意义后,让学生通过讨论、研究、发现知识间的内在联系,研究分数、比与除法的关系,掌握它们间的内在联系,形成良好的知识网络。

三、教学中注意的问题:

1、比、分数、除法的区别,比表示两个数的关系,分数表示的是一个数,除法的是一种运算。

2、体育比赛中的2:0不是比,足球赛中记录的“2:0”的意义只表示某一队与另一队比赛各得的进球分数,不表示两队所得分数的倍数关系,这与今天学习数学中的比的意义不同,它虽然借用了比的写法,但它不是一个比。

一堂课下来,感觉不足之处还有很多,有些细节地方处理得不是很到位。像在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻;还有习题以下内容包括课堂总结和延伸处理得比较粗糙。总之,还有很多地方需要雕琢。

《比的意义》教学反思 26

您现在正在阅读的《比的意义》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!《比的意义》教学反思《比的意义》这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。在教学时,组织学生以小组为单位进行研究、探索、讨论、总结、自学,培养学生的创新意识和自主学习能力。

本课的导入从学生的实际出发,从学生关心的神州飞船话题出发,问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变让我学为我要学。在学习比的意义的时候,考虑到学生对比缺乏感性上认知,所以以上的例子采用导、拨的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。意在节省教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。在学习比的各部分名称及读法、写法时,采用了让学生自学课本的方式,因为自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。在学习比和除法以及和分数关系的时候采用小组合作学习的方式,意在突破传统的教学模式,不讲授,让学生借助教材、板书的有机结合,总结出三者之间的联系,实现了自主学习。

一堂课下来,感觉不足之处还有很多,有些细节地方处理得不是很到位。像在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻;还有因为时间原因,习题以下内容包括课堂总结和延伸处理得比较粗糙。总之,还有很多地方需要学习改进。

《比的意义》教学反思 27

《比的意义》是人教版小学六年级上册第三单元分数除法中第三节“比和比的应用”里的内容。《比的意义》属于起始课,是学生第一次接触到“比”的知识,将为学生学习百分比、比例等后续知识奠定基础,因此十分重要。现将我执教这节课的情况反思如下:

1、创设贴近学生生活情境,有效激发了学生兴趣,并对学生进行了爱国主义思想教育。本节课教材中的情境图是杨利伟在“神舟五号”飞船上展示联合国国旗和中国国旗的图片。因为考虑到“神五”飞天距离现在时间较长,而“天宫一号”发射成功刚刚发生,孩子们都知道。于是我在课始播放了“天宫一号”发射的视频,视屏播放后学生的情绪高涨,自豪与喜悦之情溢于言表,甚至不由自主的鼓起掌来。这时候我趁势提出了一个问题“此刻,你的心情是怎样的”,学生都争着、抢着说,“自豪”、“骄傲”、“激动”……爱国主义情感油然而生。然后再导到“神五”和杨利伟就十分自然,学生也乐于接受了。

2、在生活情境中辨析、理解知识。为了让学生明白“比”与分数、除法三者之间的关系,我用课件展示了两足球队比赛中,比分为2:0的情境,提问“这个比和我们今天学的'比一样吗?”学生通过思考和交流发现二者的区别,一个是比倍关系,一个是比差关系。随后,我又提出了一个问题“其实2:0本身就告诉了我们它和我们今天学习的比不一样,你们发现了吗?”。学生经过引导说出:“比的后项相当于除法中的除数,分数中的分母,不能为0。所以2:0和今天学的比不一样。”这个环节通过辨析,更加深了学生对比的意义的理解。目的还不仅于此,接下来我又问道:“比的后项相当于除法的除数,分数的分母,那后项呢,比号呢?”自然过渡到比较除法、比、分数三者间的关系上。由于是学生自己生发的问题,学生的探究欲和求知欲一下子被调动起来,学生学的主动,议的热烈,效果极好。

3、层层递进式练习,节节高升的巩固。新知学完后,我设计了三道课堂练习,第一道是最基本的比、除法、分数三者形式互换题目,所有的学生都能回答,满足了学生的成就感,激起学生继续练习的欲望。第二道是一道辨析题,小明身高1米,爸爸173厘米,二人的身高比是1:173对吗?大多数学生都能很容易发现不对,并且通过思考说出二人正确的身高比。这道题主要目的是在辨析、讨论的过程中认识到同类量的比单位要一致。第三题是一道实践题,三杯糖水,第一杯糖和水的比是1:20,第二杯糖和水的比是1:25,第三杯糖20克,水100克,哪一杯糖水最甜?我先让学生比较第一杯和第二杯,学生通过思考交流理解了两个比的意义后很快得出第一杯甜的结论。第三杯糖水出示后,让学生分析第三杯糖水的比应该是多少,引导发现第三杯糖水的配置比与第二杯相同,最终得出第一杯糖水最甜。三道题由易到难,逐层递进,引导学生步步深入,满足了不同层次学生的需要。同时三道题目形式多样,有填空,有讨论,有实践,而且切近学生生活,让学生感受的所学知识的现实价值,而且有效调动了学生的参与热情。

4、立足生活实际,拓展提升认识。做完课后小结,我提出了这样一个问题“既然除法和分数都表示相除关系,那人们为什么还要创造比呢?”学生的思维一下子被打开了。回答这个问题,我依然立足生活,用蜂蜜奶茶的配置连比,让学生感受到比能同时表示多个数量之间的关系的独特功能,让学生感受的数学知识的魅力,激起学生进一步学习知识的欲望。

这节课教学还有很多不足之处,例如时间把握不好,课始在创设情境这个环节占用的时间过多,导致后面的环节显得急促,尤其是在课堂练习环节,给学生思考和探究的时间太少,影响了学生对知识的深入理解。在以后的教学中要更加注重整体把握课堂,研读教材,不断提高自己的教学水平。

《比的意义》教学反思 28

比的意义这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

(2)比的后项不能是0。本课的教学重点是理解和运用比的意义及比与除法、分数的联系;教学难点是理解比的意义。

一堂课下来,感觉不足之处还有很多,有些细节地方处理得不是很到位。像在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻;还有因为时间原因,习题以下内容包括课堂总结和延伸处理得比较粗糙。总之,还有很多地方需要学习改进。

相关推荐