首页 \ 学习文档 \ 教学反思

分式教学反思优秀12篇

作为一位刚到岗的教师,我们需要很强的教学能力,对学到的教学新方法,我们可以记录在教学反思中,教学反思应该怎么写呢?

分式教学反思 1

解分式方程的思想是将分式方程转化为整式方程,验根是解分式方程必不可少的步骤。分式方程又是解决实际问题的工具之一。

教学设计中蕴涵的数学思想和数学方法:《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的'解法。

教学目标:

1.了解分式方程的概念,和产生增根的原因。

2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。

重点、难点

1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。

2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根。

3.认知难点与突破方法

解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。

要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。

分式教学反思 2

一、要创造性地使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的`解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。

二、相信学生并为学生提供充分展示自己的机会

学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。

三、注意改进的地方

讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。

分式教学反思 3

“分式运算”教学中,学生在课堂上感觉不差,做作业或测试时却错处百出,尤其在分式的混合运算更是出错多、空白多、究其根源,均属于运算能力问题,因此在教学中应特别关注这一深层根源,并根据学生的实际情况寻找相应对策。

要较好解决学生分式运算出错多、能力差的问题,最见功夫的当属学生练习的“强度、深度和针对性”设计上。因为,分式运算能力形成的基本途径仍是练习,练得少或者缺乏针对性的练习是学生分式运算能力差的最大原因,应在教学中做到精讲多练,不可以评代练;其次,要坚持过度练习的原则,确保一定的练习量,不只停留在“会做”的层次上,要力求通过练习,使大部分学生达到“熟练而准确”的。水平;第三,学生在分式运算中出错的原因各有不同,因此,练习又必须有显著的针对性,要从学生过去的练习中,分析他们出错的原因,进行个别辅导。总之,要解决初中 中分式运算出错多的问题,就应该:“练习、纠正、再练”。

分式教学反思 4

分式初中数学中重要的一章,在中考中占有一定的比重。学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。

一、本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以复习时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。

二、复习中的重建

分式的运算(加、减、乘、除、乘方和混合运算)是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上,把分式的`基本性质做到灵活运用。

再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!

分式教学反思 5

本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。

下面结合教学过程谈谈自己的几点感悟:

一、知识链接部分我设计了分式有无意义和找几组分式的最简公分母,帮助学生回忆旧知识,并且为本节课解分式方程扫清障碍。

反思:在这个环节里,出现了一个问题,就是对学生估计过高,尤其是最简公分母的找法中下游的学生把旧知识忘了,造成浪费了课上的时间。

二、由课本中的百米赛跑的应用题引出分式方程的概念。我把课本中的阅读和一起探究改为几个小问题让学生自主探究然后小组内交流讨论。由于学生对于应用题的掌握太差,造成在这个环节浪费了太多的时间。

反思:因为本节课的重点和难点是解分式方程,所以在以后的教学中我个 改为解简单的整式方程,再给出几个分式方程让学生自己判断直接得出分式方程的'意义,节省出时间让学生重点学习和练习解分式方程。本节课值得欣喜的是四班的优生反应灵敏,

四、让学生自学课本例一,也就是解分式方程,分析课本做法的依据,和自己的做法是在否一致,会用课本的方法解题。看完后,我让学生自己做到导纲上。很多同学看完后还不是很理解,所以,我又让小组自己讨论了一下,弄明白如何做题。最后,我在黑板上板书了例题,然后,让学生将自己的纠正一下。

反思:这个内容是这节的重难点,由于前面已经做过铺垫,让学生自己尝试解过分式方程,所以,在这里我设想的是学生看完课本,明白教材的做法,自己会运用同样的方法解决分式方程。但是,在实际的操作过程中,发现一个问题,同学们并没有真正理解教材时怎么处理的,他们被第二环节中自己的做法禁锢住了,很多同学都先通分。通分很好,但通分的目的还是为了去分母。这点我没有强调到位。同时,检验的过程我没有板书在黑板,只是口头强调了一下,致使很多学生印象不深,没有进行检验。

纠正措施:重点强调化分式方程为整式方程的依据和做法。就这一步,安排几个题进行专门训练,小组合作,直到每个组员都能找到最简公分母,并会去掉分母为止。将第二课时提到这节点拨,在这节就让学生明白分式方程为何要检验,从开始就让学生养成检验的好习惯。

五、归纳解分式方程的一般步骤。根据上面的解题过程,小组总结出解题步骤。(在提示中,学生初步了解了大体步骤)

六、自学课本例二,弄明白后做到导纲上。

(这个环节设置的目的是让学生进一步熟悉分式方程的解法。注意一些细节问题。)

七、巩固练习。做导纲四道题。小组批阅。

八、总结这节课的知识。(由于前面进行不是很顺利,总结有些匆忙)

总体反思

这节课是一堂新授课。因此,让学生对知识有透彻的理解是最重要的。我们的导纲也设置了很多的环节来引导学生,提高学生的学习兴趣。

本节课的关键是如何过渡,究竟是给学生一个完全自由的空间还是让学生在老师的引导下去完成,“完全开放”符合设计思路,符合课改要求,但是经过教学发现,学生在有限的时间内难以完成教学任务,因此,先讲解,做示范,再练习更好些。

在教学过程中,由于种种原因,存在着不少的不足。

1、回顾引入部分题目有点多,难度有些高,没有达到原来设想的调动积极性的作用。应该选择简单有代表性的一两个题目,循序渐进,符合人类认知规律。

2、由于经验不足,随机应变的能力有些欠缺,对在教学中出现的新问题,应对的不理想,没有立刻采取有效措施解决问题。例如,在复习整式方程时,学生并不像想象中对整式方程解题过程很了解,我就引导大家一起复习了一下,在这里,如果再临时出几个题目巩固一下,效果也许更好些。

3、教学重点强调力度不够。对学生理解消化能力过于相信,在看例一的过程中,每一步的依据都进行了讲解,而分式方程的难点就是第一步,即将分式方程转化成整式方程。在这里,需要特别强化这个过程,应该对其进行专项训练或重点分析。例如,就学生的不同做法进行分析,让他们明白课本的这种方法最简单最方便。同时,通过板书示范分式方程的解题。

4、时间掌握不够。备学生不够充分,导致突发事件过多,时间被浪费了,以致总结过于匆忙。

这次的课让我感触颇深。在各位老教师无私地指导和细心地讲评中,我更看到了自己的不足,在今后的教学中,我会多思考,充分的将“学生备好”,多积累经验,向老教师请教,培养自己应对突发情况的能力,做个成功的“引导者”。

分式教学反思 6

本课从实际问题引入,让学生感受到实际生活中会碰到分式加减法运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。

由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的。加减运算法则,通过类比的思想方法,有数的运算引出式的运算规律,体现数学知识由具体到抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生的学习积极性。而后,同样利用类比的方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,并且通过通分将异分母分式加减化为同分母分式加减的运算,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识握比较好,知识已落实到位。

分式教学反思 7

分式一章的第一课时教学,利用引例列出的代数式进行归纳比较,得出分式的概念,抓住分式概念最本质的特征“分母含有字母”,从而研究:分式有意义无意义的条件、分式的值为零的条件、分式的值为正数负数整数等条件,解决各种数学问题。

在解决分式的值为零,分子为零且分母不为零的题型时,有考虑字母的值的取舍的题目,采用学生在黑板上的说理方法比我原来的方法更有效,学生的方法是:由分子x2-4=0求得x=2及x=-2,再分别将求得的字母的值代入分母进行计算,使分母为零的。情况舍去,使分母不为零的保留,进行这样的取舍检验,对于分母不是一次多项式的情况就能顺利地区分出来,学生使用的这个方法好。

在转化求解时,发现学生对一元一次不等式组的解题还是比较生疏的,为了使学生全面提高学习效果,在遇有类似情况时还是复习一下更有效果。学习的主体是学生,不是课堂的花架子。

对于-a2-1一定为负数,也同样要师生协作,生生协作讨论研究,确保全体学生理解和灵活应用。

对于题目:整数x取何值时,分式4/x-1的值为整数,学生的理解和解题也是一个难点。

由于学生没有课本,我们的课堂学案应设计的更具实用性,课堂知识内容的表达要更加便于学生理解和接受。

分式教学反思 8

本节课是在学生已经学习了整式方程,特别是含有分母的一元一次方程的基础上,进一步认识分式方程(未知数在分母中),并探讨分式方程的解法。反思本节课的教学,有以下几点值得肯定:

1. 教学设计充分尊重学生,符合新课程理念及“ 本节课在设计教学内容及环节时,充分考虑到学生的认知规律及已有知识经验。采用了“复习旧知、创设情境、自主学习、交流反馈——归纳提升——应用练习”的教学模式进行课堂教学。首先,设计了一个含有分母的一元一次方程,使学生在解决旧知的基础上,回顾解一元一次方程的基本步骤及去分母的方法。接着给出两个实际问题引发学生思考,通过建立数学模型,列出方程使学生初步感受分式方程与整式方程的区别,引导学生自学教材分式方程的定义。初步认识了分式方程后,鼓励学生自主研究解分式方程的方法,在展示反馈的过程中互相交流不同的做法,并体会化归思想在解方程中的作用。通过检验发现有的分式方程会产生使原分式方程无意义的“根”,从而引发思考:这是为什么?并组织学生在小组内交流讨论,解释原因并归纳得到解分式方程的基本思想及一般步骤。接下来进行应用练习。整节课的设计环节紧凑,衔接自然,能够引发学生思考,并充分体现了“先学后教”“以学定教”的理念。

2. 课堂教学中能够以学生为主体设计问题,该放手时就放手,充分尊重学生,无论是分式定义还是解分式方程的思想方法,甚至是本节课的难点问题——分式方程产生曾根的原因,都是由学生通过自主学习或者是小组交流合作完成,学生在课堂上思维活跃,积极参与本节课的教学活动,是课堂焕发出勃勃生机。

3. 课堂教学中能够关注学困生,为学困生的`学习搭建平台。在学生进行自主学习和交流讨论时,教师能够走下讲台,走进学生中间,主动关注学困生,指导他们解决疑难问题或提醒同组成员关注学困生的学习情况。并且,在应用新知解决问题环节,还请每组的5号同学上黑板展示,当他们遇到困难时,允许同组其他成员上前帮忙,这就为学困生创设了展示自我的机会,也使他们体会到成功的喜悦。

4. 课堂教学中注重学生各方面能力的提升及课堂教学评价的时效性。本节课前,教师就把评价标准写在黑板上,教学过程中引导学生按照标准对他人的学习成果进行科学地点评和评价。这不仅充分调动学生学习的积极性,也引领学生从不同层面对他人的学习进行评价,同时也训练学生语言的严谨性、准确性。提高学生的语言表达能力的同时,也引导学生学会倾听、学会检查、学会评价甚至学会取长补短。

当然,“教学是一门遗憾的艺术”,再成功的课也有瑕疵,本节课也不例外。由于本节课在学生交流讨论、展示反馈过程中充分尊重学生,在时间上很难把握,致使应用练习的时间有些仓促,部分学生不能按时完成所有习题。另外本节课学生参与度虽然比较高,但还有提升的空间。

总之,本节课的教学效果较好,教学目标达成度较高。证明我对课堂教学改革的大胆尝试特别是对“

分式教学反思 9

1、在复习中引入新的教学重点,回顾以往所学习的方程知识,采用让学生自己说出几个一元一次方程并求解的方法,充分发挥了学生的主动性,活跃了课堂气氛。为本节课开了一个好头。

2、利用学生的一个求不出解的。一元一次方程(x-1)/3+1=(2x-3)/6,借机让学生明确可化为ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的让学生为后面的学习做好了铺垫。也吸引了学生的注意力,让学生觉得有趣而一步一步的听下去。

3、通过设问,活动,让学生亲自感知,体验,在感知和体验中进行质疑、思考与探究,通过质疑、思考与探索发现新知,激发了学生的参与热情,培养了学生的探索意识,使学生在喜悦的气氛下自主的学习。

通过本节课,也使我领悟到,在今后的教学中,应做到以下几点:

1、变枯燥为有趣同,让学生成为整个教学的重点。

兴趣是最好的老师,只有充分调动学生的学习热情,才能使学生真正参与学习中来,才能主动地去学习。当然,这需要老师多下功夫,多联系实际,多设计情景,让学生觉得不是在上课,而是在演电视剧,而他就是其中的主人公。

2、变复杂为简单。

越简单学生就越想学,越会做学生就越想做,简单之中蕴含着大道理,简单的做多了,熟练了,才可能去做复杂的。当然这需要形式多样,而不能单一。

3、给学生足够的思考空间,不要急于给出答案,就是学生说错了,也不要把学生硬拉过来,而应该给学生留下思考的空间。

分式教学反思 10

一是分式的运算错的较多。

分式加减法主要是当分子是多项式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

二是分式方程也是错误重灾区。

(一)是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述,

⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;

⑵增根能使最简公分母等于0;

(二)是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的。模式中跳出来;

(三)是列分式方程错误百出。

针对上述问题,我从基础知识和题型入手,用类比的方法讲解,与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。

分式教学反思 11

本节是学习了分式的基本性质后的内容,是分式的基本运算内容之一,分式的加减教学反思。其中,分式加减运算是本节课的重点,异分母的分式加减是本节课的难点,而异分母的分式加减运算是本节课的难点。而异分母的分式加减运算可以转化到同分母的分式加减运算中,因此,掌握好同分母的。分式加减运算是关键,本人从以下几方面作反思:

(1)成功之处

本课从实际问题引入,让学生直接感受到实际生活中会碰到分式的加减运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。

由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的加减运算的法则,通过类比的思想方法,由数的运算引出式的运算规律,体现数学知识由具体到抽象,从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生学习的积极性。而后,同样利用类比方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,而且通过通分将异分母的分式加减转化为同分母的分式加减运算上,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识掌握比较好,知识已落实到位。

(2)不足之处

本课出现了有头无尾的情况,前后呼应还没做到位,没有解决引例中“”如何计算这个问题,这是本节课的一个最大的遗憾。课堂教学真的是“一门缺憾的艺术”正是有着这样或那样的缺憾,才使我们更有动力的在探索地道路上大步前行。

一节数学课,经过反思,会发现许多值得推敲的地方,会发觉好多细节的地方需要精心设计,在反思中,能提升自己的认识,为以后的教学积累宝贵的经验,让自己更贴近学生。

分式教学反思 12

分式这章的内容在初中教学的过程中,属于中难度的知识。首先学生在理解它的定义上就有难度。类比整式,概念上就难以建模。分式有意义无意义,分式值为0、不为0,分式值为正或负的概念出现,又给学生学习的过程中设置了难度。在第二大块的分式运算中又是多块知识点的综合和应用。要理解分式性质对通分和约分的理论支持作用,同时还要能准确的计算最简公分母、公因式,能准确进行整式的加减和乘除运算,还要能够准确进行因式分解的计算。所以这部分内容实际上对学生的理解、建模、迁移及计算能力有很高的要求。很多同学是越学越糊涂,学完后都不知所以然甚至什么都不会。更不要说加上后面的分式方程。两部内容完全理不清。分不清谁是谁,到底该怎么算。分式的加减、乘除及混合运算更是错误百出,感觉分不清计算的思路和方法。因此在复习中重点解决的就是这些概念、定义及运算中的易错点和难点。针对复习过程中出现的。问题,我总结了以下几条:

一、概念混淆不清,计算过程错误百出

分式运算的错误常见的类型有对分式性质不理解、对运算律的不掌握、对运算法则的不熟练。而运算的准确性是学生计算的基本要求,很多学生产生错误了不以为然,认为是粗心或者马虎的原因。实则不是,这是因为他们对基本的定义和概念理解不透彻,对基本公式、法则掌握不熟练造成的。要解决这些问题,必须重视相应知识点的理解和训练,把分式运算中的知识点逐一分析,专项练习巩固,重点突破,多联系和测验,及时检查纠正。不让问题堆积,查漏补缺,对普遍性错误重点讲解,以便引起学生足够的重视。

二、畏惧心理和畏难情绪

分式运算字母多、式子长、综合要求高,不少学生一看到分式运算尤其是混合运算就头大,信心不足,甚至产生畏难心理,一算就错,一讲就懂,在算还是错误层出。面对这种问题,应着眼于以下几点:

(一)总结分式运算中各种容易出现的错误问题,力争逐一练习和得以解决。加减乘除一项一项的练习,在进行混合运算。

(二)营造轻松愉快的学习氛围,分层次进行练习,由易到难,由简到繁的设置题目,让各层次的的学生都能有所收获,增强自信心,减轻心理负担。

(三)教会学生计算的方法、明白运算顺序和运算的技巧,拆项训练和递进训练同时进行。帮助学生分析出错的原因并加以辅导,争取优生更优,差生提升,全员掌握。

三、审题不清,分析不到位

很多学生在分式运算的过程中出错,主要是因为不重视审题,题目还没看完就动笔,不研究题目的结构及运算顺序。随意通分约分,不看题目结构特征、不遵循运算顺序。要教会学生在审题时注意以下几点:

(一)题目有哪些运算;

(二)运算之间的先后顺序;

(三)式子中有无应先整理的式子,如先分解因式的,小数系数的式子;

(四)是否有简便方法,哪些地方容易出错或忽视

四、培养总结归纳经典题目的能力

优化解题,激发学习兴趣,简便运算。典型例题举一反三,多观察多思考多总结。不是停留在会做,而是达到熟练准确的程度。总之,要通过分析问题,解决问题,反复的练习纠错总结再练习的方式,解决分式运算的问题。

相关推荐